Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

Warning: Cannot modify header information - headers already sent by (output started at /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php:456) in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 1219
James’s Page | Actuary / FMExamTheory
Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456

From James’s Page

Actuary: FMExamTheory

Exam FM Theory

Basic formulas

Accumulating and discount factors

These are {$1+i$} and {$v$}, respectively. The relationships are {$$ v= \frac{1}{1+i}, \qquad i=\frac{1}{v}-1. $$}

Effective rates of interest and discount

These are denoted {$i$} and {$d$}, respectively. The relationships are {$$ v=1-d=\frac{1}{1+i}, \qquad d=iv=\frac{i}{1+i}, \qquad i=\frac{d}{v}=\frac{d}{1-d}. $$}

Annuity formulas

Constant annuity

{$$ a_{\overline{n}|} = \frac{1-v^n}{i}; \qquad s_{\overline{n}|} = \frac{(1+i)^n-1}{i}$$}

{$$ \ddot{a}_{\overline{n}|} = \frac{1-v^n}{d}; \qquad \ddot{s}_{\overline{n}|} = \frac{(1+i)^n-1}{d}$$}

{$$ \ddot{a}_{\overline{n}|}= a_{\overline{n}|}(1+i); \qquad \ddot{s}_{\overline{n}|}= s_{\overline{n}|}(1+i)$$}

Annuity-dues are a little bigger than annuity-immediates.
Be careful that for annuity-dues, the comparison date for future value calculations is at one year after the last payment. For annuity-immediates, the comparison date for present value calculations is at one year before the first payment.

Increasing annuity

{$$ (Ia)_{\overline{n}|} = \frac{\ddot{a}_{\overline{n}|}-nv^n}{i}; \qquad (Is)_{\overline{n}|} = \frac{\ddot{s}_{\overline{n}|}-n}{i} $$}

{$$ (I\ddot{a})_{\overline{n}|} = \frac{\ddot{a}_{\overline{n}|}-nv^n}{d};\qquad (I\ddot{s})_{\overline{n}|} = \frac{\ddot{s}_{\overline{n}|}-n}{d}$$}

Decreasing annuity

{$$ (Da)_{\overline{n}|} = \frac{n-a_{\overline{n}|}}{i}; \qquad (Ds)_{\overline{n}|} = \frac{n(1+i)^n - s_{\overline{n}|}}{i}$$}

{$$ (D\ddot{a})_{\overline{n}|} = \frac{n-a_{\overline{n}|}}{d}; \qquad (D\ddot{s})_{\overline{n}|} = \frac{n(1+i)^n - s_{\overline{n}|}}{d}$$}

{$$ (Da)_{\overline{n}|} + (Ia)_{\overline{n}|} = (n+1)a_{\overline{n}|}; \qquad (Ds)_{\overline{n}|} + (Is)_{\overline{n}|} = (n+1)s_{\overline{n}|};$$}

similarly for annuity-dues.

Other annuity formulas

Non-annual time periods

{$$ \left( 1+\frac{i^(p)}{p}\right)^p =1+i =\left( 1-\frac{d^(m)}{m}\right)^{-m} =(1-d)^{-1}.$$}

If we compound more than once a year, then {$i$} is a little bigger than {$i^(p)$}, and {$d$} is a little smaller than {$d^(p)$}.
Retrieved from http://www.jamestung.com/Actuary/FMExamTheory
Page last modified on May 21, 2007, at 02:38 PM