Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456 Deprecated: Function create_function() is deprecated in /home/jtung/jamestung.com/pmwiki-2.2.71/pmwiki.php on line 456 |
Actuary /
FMExamTheoryExam FM TheoryBasic formulasAccumulating and discount factorsThese are {$1+i$} and {$v$}, respectively. The relationships are {$$ v= \frac{1}{1+i}, \qquad i=\frac{1}{v}-1. $$} Effective rates of interest and discountThese are denoted {$i$} and {$d$}, respectively. The relationships are {$$ v=1-d=\frac{1}{1+i}, \qquad d=iv=\frac{i}{1+i}, \qquad i=\frac{d}{v}=\frac{d}{1-d}. $$} Annuity formulasConstant annuity
{$$ a_{\overline{n}|} = \frac{1-v^n}{i}; \qquad s_{\overline{n}|} = \frac{(1+i)^n-1}{i}$$}
{$$ \ddot{a}_{\overline{n}|} = \frac{1-v^n}{d}; \qquad \ddot{s}_{\overline{n}|} = \frac{(1+i)^n-1}{d}$$}
{$$ \ddot{a}_{\overline{n}|}= a_{\overline{n}|}(1+i); \qquad \ddot{s}_{\overline{n}|}= s_{\overline{n}|}(1+i)$$} Annuity-dues are a little bigger than annuity-immediates.
Be careful that for annuity-dues, the comparison date for future value calculations is at one year after the last payment. For annuity-immediates, the comparison date for present value calculations is at one year before the first payment.
Increasing annuity
{$$ (Ia)_{\overline{n}|} = \frac{\ddot{a}_{\overline{n}|}-nv^n}{i}; \qquad (Is)_{\overline{n}|} = \frac{\ddot{s}_{\overline{n}|}-n}{i} $$}
{$$ (I\ddot{a})_{\overline{n}|} = \frac{\ddot{a}_{\overline{n}|}-nv^n}{d};\qquad (I\ddot{s})_{\overline{n}|} = \frac{\ddot{s}_{\overline{n}|}-n}{d}$$} Decreasing annuity
{$$ (Da)_{\overline{n}|} = \frac{n-a_{\overline{n}|}}{i}; \qquad (Ds)_{\overline{n}|} = \frac{n(1+i)^n - s_{\overline{n}|}}{i}$$}
{$$ (D\ddot{a})_{\overline{n}|} = \frac{n-a_{\overline{n}|}}{d}; \qquad (D\ddot{s})_{\overline{n}|} = \frac{n(1+i)^n - s_{\overline{n}|}}{d}$$}
{$$ (Da)_{\overline{n}|} + (Ia)_{\overline{n}|} = (n+1)a_{\overline{n}|}; \qquad (Ds)_{\overline{n}|} + (Is)_{\overline{n}|} = (n+1)s_{\overline{n}|};$$} similarly for annuity-dues.
Other annuity formulas
Non-annual time periods
{$$ \left( 1+\frac{i^(p)}{p}\right)^p =1+i =\left( 1-\frac{d^(m)}{m}\right)^{-m} =(1-d)^{-1}.$$} If we compound more than once a year, then {$i$} is a little bigger than {$i^(p)$}, and {$d$} is a little smaller than {$d^(p)$}.
|